tensor.squeeze函数和tensor.unsqueeze函数的使用详解

  • A+
所属分类:知道百科

tensor.squeeze() 和 tensor.unsqueeze() 是 PyTorch 中用于改变 tensor 形状的两个函数,它们的作用如下:

  • tensor.squeeze(dim=None, *, out=None) : 压缩 tensor 中尺寸为 1 的维度,并返回新的 tensor。可以指定要压缩的维度(默认为所有尺寸为 1 的维度均压缩)。
  • tensor.unsqueeze(dim, *, out=None) : 在指定的位置插入一个新维度,并返回新的 tensor。dim 参数表示新插入的维度在哪个位置(从 0 开始),可以是负数,表示倒数第几个维度。
  • squeeze 是压缩维度,unsqueeze是增加维度.

下面给出例子来说明它们的使用。

tensor.squeeze()

import torch
 
# 创建一个形状为 (1, 3, 1, 2) 的 tensor
x = torch.randn(1, 3, 1, 2)
print(x.shape)  # torch.Size([1, 3, 1, 2])
 
# 压缩尺寸为 1 的维度
y = x.squeeze()
print(y.shape)  # torch.Size([3, 2])
 
# 指定要压缩的维度
y = x.squeeze(dim=0)
print(y.shape)  # torch.Size([3, 1, 2])

在上面的例子中,我们创建了一个形状为 (1, 3, 1, 2) 的 tensor,然后使用 squeeze() 函数压缩了尺寸为 1 的维度。在第二个 squeeze() 调用中,我们指定了要压缩的维度为 0,也就是第一个维度,因此第一个维度的大小被压缩为 1,变成了形状为 (3, 1, 2) 的 tensor。

tensor.unsqueeze()

import torch
 
# 创建一个形状为 (3, 2) 的 tensor
x = torch.randn(3, 2)
print(x.shape)  # torch.Size([3, 2])
 
# 在维度 0 上插入新维度
y = x.unsqueeze(dim=0)
print(y.shape)  # torch.Size([1, 3, 2])
 
# 在维度 1 上插入新维度
y = x.unsqueeze(dim=1)
print(y.shape)  # torch.Size([3, 1, 2])
 
# 在倒数第二个维度上插入新维度
y = x.unsqueeze(dim=-2)
print(y.shape)  # torch.Size([3, 1, 2])

在上面的例子中,我们创建了一个形状为 (3, 2) 的 tensor,然后使用 unsqueeze() 函数在不同的位置插入了新维度。在第一个 unsqueeze() 调用中,我们在维度 0 上插入了新维度,因此新的 tensor 形状为 (1, 3, 2)。在第二个和第三个 unsqueeze() 调用中,我们分别在维度 1 和倒数第二个维度上插入了新维度,分别得到了形状为 (3, 1, 2) 和 (3, 2, 1) 的 tensor。

到此这篇关于tensor.squeeze函数和tensor.unsqueeze函数的使用详解的文章就介绍到这了

大家都在看:

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: